Calcium Dependence of Eugenol Tolerance and Toxicity in Saccharomyces cerevisiae

نویسندگان

  • Stephen K. Roberts
  • Martin McAinsh
  • Hanna Cantopher
  • Sean Sandison
چکیده

Eugenol is a plant-derived phenolic compound which has recognised therapeutical potential as an antifungal agent. However little is known of either its fungicidal activity or the mechanisms employed by fungi to tolerate eugenol toxicity. A better exploitation of eugenol as a therapeutic agent will therefore depend on addressing this knowledge gap. Eugenol initiates increases in cytosolic Ca2+ in Saccharomyces cerevisiae which is partly dependent on the plasma membrane calcium channel, Cch1p. However, it is unclear whether a toxic cytosolic Ca2+elevation mediates the fungicidal activity of eugenol. In the present study, no significant difference in yeast survival was observed following transient eugenol treatment in the presence or absence of extracellular Ca2+. Furthermore, using yeast expressing apoaequorin to report cytosolic Ca2+ and a range of eugenol derivatives, antifungal activity did not appear to be coupled to Ca2+ influx or cytosolic Ca2+ elevation. Taken together, these results suggest that eugenol toxicity is not dependent on a toxic influx of Ca2+. In contrast, careful control of extracellular Ca2+ (using EGTA or BAPTA) revealed that tolerance of yeast to eugenol depended on Ca2+ influx via Cch1p. These findings expose significant differences between the antifungal activity of eugenol and that of azoles, amiodarone and carvacrol. This study highlights the potential to use eugenol in combination with other antifungal agents that exhibit differing modes of action as antifungal agents to combat drug resistant infections.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cch1p Mediates Ca2+ Influx to Protect Saccharomyces cerevisiae against Eugenol Toxicity

Eugenol has antifungal activity and is recognised as having therapeutic potential. However, little is known of the cellular basis of its antifungal activity and a better understanding of eugenol tolerance should lead to better exploitation of eugenol in antifungal therapies. The model yeast, Saccharomyces cerevisiae, expressing apoaequorin was used to show that eugenol induces cytosolic Ca(2+) ...

متن کامل

Saccharomyces cerevisiae TFS9, a novel isolated yeast capable of high caffeine-tolerant and its application in biodecaffeination approach

There is a great call for using microbial bio-decaffeination approach to remove caffeinefrom caffeinated products and industrial wastes. We aimed in this study to screen strainsof yeasts which exhibit high caffeine tolerance and to investigate the bio-degradation ofcaffeine under growth conditions. Sixteen yeast strains were isolated from the cultivatedtea soils collected from sites of northern...

متن کامل

Auto-antibodies in Patients with Inflammatory Bowel Disease Unclassified

Background: Inflammatory bowel disease unclassified (IBDU) is considered to be an aberrant immune response with loss of tolerance to many antigens. Objective: This paper tries to address whether there is any value to test for auto-antibodies in such patients. Methods: 60 patients with inflammatory bowel disease unclassified participated in the study. Auto-antibodies to nuclear antigen, intestin...

متن کامل

Characterization of an Interesting Novel Mutant Strain of Commercial Saccharomyces cerevisiae

The yeast strains that are resistant to high concentration of ethanol have biotechnological benefits and aresuitable models for physiology and molecular genetics research fields. A novel ethanol-tolerant mutant strain,mut1, derived from the commercial Saccharomyces cerevisiae showed higher ethanol production, and alsodemonstrated resistance to ethanol but not to other alcohols...

متن کامل

تأثیر مخمر ساکارومایسس سرویزیه بر میزان کاهش سم قارچی سیترینین در آرد گندم

Background & Objective: Citrinin mycotoxin is produced by filamentous toxin producing fungi. Saccharomyces cerevisiae yeast has the ability to bind mycotoxins to its cell wall and thus reduce its toxicity. The aim of this study was to determine the amount of Citrinin mycotoxin and its reduction in wheat flour by Saccharomyces cerevisiae. Method: In this study, 15 samples of wheat flour were...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014